

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 3987-3989

Rumphellatin A, the first chloride-containing caryophyllane-type norsesquiterpenoid from *Rumphella antipathies*

Ping-Jyun Sung,^{a,b,*} Li-Fan Chuang,^{a,b} Jimmy Kuo,^{a,b} Tung-Yung Fan^{a,c} and Wan-Ping Hu^d

^aNational Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan, ROC

^bInstitute of Marine Biotechnology, National Dong Hwa University, Checheng, Pingtung 944, Taiwan, ROC

^cInstitute of Marine Biodiversity and Evolution, National Dong Hwa University, Checheng, Pingtung 944, Taiwan, ROC ^dFaculty of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC

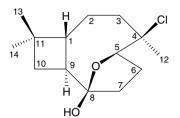
Received 23 March 2007; accepted 10 April 2007

Available online 14 April 2007

Abstract—A novel chloride-containing 14C norsesquiterpenoid, rumphellatin A (1), was isolated from the Formosan gorgonian coral *Rumphella antipathies*. The structure of metabolite 1 was determined on the basis of spectral data analysis and the configuration of 1 was further supported by molecular mechanics calculations. Rumphellatin A (1) showed activity against Gram-negative bacteria.

© 2007 Published by Elsevier Ltd.

In our screening for bioactive substances from the Formosan soft corals, we have discovered a series of interesting terpenoid and steroid metabolites from the octocorals *Briareum* sp.,¹ *Briareum excavatum*,² *Junce-ella fragilis*,³ *Junceella juncea*,^{3c,4} and *Alcyonium* sp.⁵ In previous studies, the compounds of caryophyllanetype exist widely in terrestrial plants,⁶ however, the compounds of this type were shown to be rarely found in marine organisms.⁷ Several studies have focused on the steroid components,⁸ the organic extracts from the gorgonian belonging to the Rumphella genus in ecology and their medical use.^{9,10} In this Letter, we wish to describe the isolation, structure characterization, and biological activity of a new chlorinated caryophyllane-type norsesquiterpenoid, rumphellatin A (1), from the gorgonian coral Rumphella antipathies (phylum Cnidaria, order Gorgonacea, suborder Holaxonia, family Gorgoniidae). The structure of 1 was elucidated by extensive spectral data analysis. Antibacterial activity of compound 1 toward the Gram-negative bacteria, Escherichia coli and Vibrio parahaemolyticus, is also reported.


The organisms of *R. antipathies* (wet weight, 402 g) were collected in May 2004, off the southern Taiwan coast, were successively extracted with a mixture of MeOH and DCM (1:1). The residue was further partitioned between *n*-hexane and 9:1 MeOH–H₂O; the MeOH–H₂O phase was diluted to 1:1 MeOH–H₂O and partitioned against DCM. The DCM layer was separated on silica gel and purified by HPLC to afford metabolite **1** (*n*-hexane–acetone, 7:1).

Rumphellatin A (1) was isolated as a white powder, 0.4 mg, mp 97–98 °C; $[\alpha]_D^{25} -5$ (*c* 0.08, CHCl₃), The molecular formula for metabolite 1 was determined to be C₁₄H₂₃ClO₂ (three degrees of unsaturation) by analysis of ¹³C and ¹H NMR data (Table 1) in conjunction with DEPT results, and this conclusion was further confirmed by HRESIMS (C₁₄H₂₃ClO₂+Na: found, 281.1287; calcd: 281.1284). Comparison of the ¹H NMR and DEPT data with the molecular formula indicated that there must be an exchangeable proton, requiring the presence of a hydroxy group and this deduction was supported by a broad absorption in the IR spectrum at 3395 cm⁻¹. From the ¹³C NMR data of 1, there are no olefinic carbon and carbonyl groups were observed. Thus, from above observations, rumphellatin A (1) must be a tricyclic compound. In the ¹³C NMR spectrum of 1, the signals for a hemiketal (δ 109.5, s, C-8), an oxygenbearing methine (δ 83.9, d, CH-5), and a chlorinated

Keywords: Rumphellatin; Caryophyllane; Norsesquiterpenoid; *Rumphella*; Antibacterial activity.

^{*} Corresponding author. Tel.: +886 8 8825037; fax: +886 8 8825087; e-mail: pjsung@nmmba.gov.tw

Table 1. $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data and HMBC correlations for sesquiterpenoid 1

1

		1	
C/H	$^{1}\mathrm{H}^{\mathrm{a}}$	¹³ C ^b	HMBC (H–C)
1	1.42 br t (10.5) ^c	$48.9 (d)^d$	C-2, C-3, C-9, C-11
2α	1.30 m	26.0 (t)	C-1, C-3, C-11
β	1.53 dt (10.5, 4.5)		
3/3′	2.06 dd (6.0, 6.0)	41.3 (t)	C-1, C-2, C-4, C-5, C-12
4		76.1 (s)	
5	4.50 dd (8.5, 7.5)	83.9 (d)	C-3, C-4, C-8
6α	2.37 m	26.3 (t)	n.o. ^e
β	2.12 m		
7α	1.85 dt (13.5, 11.0)	32.6 (t)	C-5, C-6, C-8, C-9
β	2.42 dd (13.5, 8.0)		
8		109.5 (s)	
9	2.15 m	47.9 (d)	C-8
10α	1.64 dd (10.5, 6.0)	35.6 (t)	C-1, C-8, C-9, C-11,
			C-13, C-14
β	1.35 br t (10.5)		
11		35.1 (s)	
12	1.71 s	28.9 (q)	C-3, C-4, C-5
13	1.02 s	29.7 (q)	C-1, C-10, C-11, C-14
14	0.99 s	20.7 (q)	C-1, C-10, C-11, C-13
OH-8	2.35 s		C-7, C-8, C-9

^a Spectra recorded at 500 MHz in CDCl₃ at 25 °C.

^b Spectra recorded at 125 MHz in CDCl₃ at 25 °C.

^c J values (in Hz) in parentheses. The values are downfield in parts per million from TMS.

^d Multiplicity was deduced by HMQC and DEPT spectra and indicated by usual symbol. The values are downfield in parts million from TMS.

^e n.o. = not observed.

quaternary carbon (δ 76.1, s, C-4) were observed, along with eleven additional sp³ signals (a quaternary carbon, two methine, five methylene, and three methyl groups) in the ¹³C NMR spectrum. The ¹H NMR spectrum showed that all three methyl groups are isolated (δ 1.71, 3H, s, H₃-12; 1.02, 3H, s, H₃-13; 0.99, 3H, s, H₃-14). In addition, five pairs of aliphatic methylene protons (δ 1.30, 1H, m, H-2 α ; 1.53, 1H, dt, J = 10.5, 4.5 Hz, H-2 β ; 2.06, 2H, dd, J = 6.0, 6.0 Hz, H₂-3; 2.37, 1H, m, H-6a; 2.12, 1H, m, H-6β; 1.85, 1H, dt, J = 13.5, 11.0 Hz, H-7 α ; 2.42, 1H, dd, J = 13.5, 8.0 Hz, H-7 β ; 1.64, 1H, dd, J = 10.5, 6.0 Hz, H-10 α ; 1.35, 1H, br t, J = 10.5 Hz, H-10 β), two aliphatic methine protons (δ 1.42, 1H, br t, J = 10.5 Hz, H-1; 2.15, 1H, m, H-9), an oxygenated methine proton (δ 4.50, 1H, dd, J = 8.5, 7.5 Hz, H-5), and a hydroxy proton (δ 2.35, 1H, s, OH-8) were observed in the ¹H NMR spectrum of 1.

The gross structure of **1** and all of the ¹H and ¹³C NMR data associated with the molecule was determined by 2D NMR studies, including ${}^{1}H{-}^{1}H$ COSY, HMQC, and

HMBC experiments. From the ¹H NMR coupling information in the ${}^{1}H-{}^{1}H$ COSY spectrum of 1 enabled identification of the C1-C2-C3, C5-C6-C7, C9-C10, and C1-C9 units (Fig. 1). These data, together with the HMBC correlations between H-1/C-2, C-3, C-9; H₂-2/ C-1, C-3; H₂-3/C-1, C-2, C-4, C-5; H-5/C-3, C-4, C-8; H₂-7/C-5, C-6, C-8, C-9; and H-9/C-8 (Table 1 and Fig. 1), established the connectivity from C-1 to C-9 within the nine-membered ring. A methyl attached at C-4 was confirmed by the HMBC correlations between H_3 -12/C-3, C-4, C-5 and H_2 -3/C-12. The cyclobutane ring, which is fused to the nine-membered ring at C-1 and C-9, was elucidated by the key HMBC correlations between H-1/C-11; H₂-2/C-11; and H₂-10/C-1, C-8, C-9. The cyclic ether ring between C-5 and C-8 was established by a strong HMBC correlation between the proton of C-5 oxymethine ($\delta_{\rm H}$ 4.50) and the C-8 quaternary hemiketal carbon ($\delta_{\rm C}$ 109.5, s). The hydroxy group positioned at C-8 was confirmed by the connectivity between the hydroxy proton ($\delta_{\rm H}$ 2.35) and C-7, C-8, and C-9. These data, together with the HMBC correlations between H2-10/C-11, C-13, C-14; H3-13/C-1, C-10, C-11, C-14; and H₃-14/C-1, C-10, C-11, C-13, unambiguously established the planar structure of 1.

The stereochemistry of 1 was elucidated from the NOE interactions observed in an NOESY experiment (Fig. 2). Due to the α orientation of H-9, the ring juncture H-1 should be β -oriented as no NOE correlation was observed between H-1 and H-9. In the NOESY experiment of 1, H-5 exhibited strong NOE correlations to H₃-12 and one proton of C-6 methylene, but not with H-1. From consideration of molecular models, H-5 was found to reasonably close to H₃-12 when H₃-12 and H-5 were placed on the equatorial direction and assigned as α and β protons, respectively, in the nine-membered ring. These observations were further supported by the NOE interactions between H_3 -12 and H_2 -3, but not with H_2 -2. Based on above findings, the structure, including the relative stereochemistry of 1 was established, the configurations of all chiral centers of 1 were assigned as 1R*, 4R*, 5S*, 8R*, 9S*. Furthermore, geometrical optimization of 1 was performed with DISCOVER utilizing the consistent valence force field (CVFF) calculations for energy minimization. The calculated results were visualized using INSIGH II, running on a Silicon Graphics IRIS (SGI) Indigo XS24/4000 workstation.

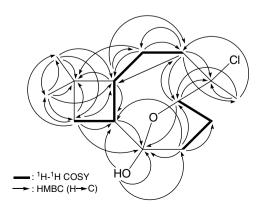


Figure 1. The ¹H–¹H COSY and HMBC correlations of 1.

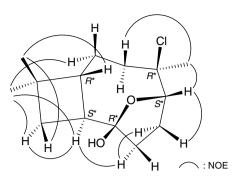
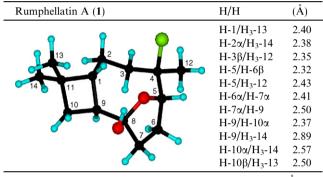



Figure 2. Selective NOESY correlations of 1.

Table 2. The stereoview of 1 (generated from computer modeling) and the calculated distances (Å) between selected protons having key NOE correlations^a

^a The calculated distance between H-1 (β) and H-9 (α) is 3.05 Å.

The conformation search suggested that the most stable conformation and the calculated distances between those protons having key NOE correlations of 1 are all shorter than 3 Å as shown in Table 2.¹¹ To the best of our knowledge, rumphellatin A (1) is the first chlorinated caryophyllane-type natural products. The five-membered cyclic ether ring (a tetrahydrofuran ring) between C-5/C-8 and the C-8 hemiketal group in 1 was also rarely found in caryophyllane derivatives.

In the biological activity testing, compound **1** exhibited activity in standard agar disk diffusion $assay^{12}$ against the Gram-negative bacteria *E. coli* and *V. parahaemolyticus*, each causing a 10 and 13 mm zone inhibition, respectively, at 100 µg/mL.

Acknowledgments

This research work was supported by grants from the National Science Council, Taiwan, ROC (NSC 94-2320-B-291-001 and NSC 95-2320-B-291-001-MY2), and by the intramural funding from the NMMBA awarded to P.-J.S.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2007.04.040.

References and notes

- Sung, P.-J.; Hu, W.-P.; Fang, L.-S.; Fan, T.-Y.; Wang, J.-J.. Nat. Prod. Res. 2005, 19, 689–694.
- (a) Sung, P.-J.; Hu, W.-P.; Wu, S.-L.; Su, J.-H.; Fang, L.-S.; Wang, J.-J.; Sheu, J.-H. *Tetrahedron* 2004, 60, 8975–8979; (b) Sung, P.-J.; Chao, C.-H.; Chen, Y.-P.; Su, J.-H.; Hu, W.-P.; Sheu, J.-H. *Tetrahedron Lett.* 2006, 47, 167–170; (c) Sung, P.-J.; Chen, Y.-P.; Hwang, T.-L.; Hu, W.-P.; Fang, L.-S.; Wu, Y.-C.; Li, J.-J.; Sheu, J.-H. *Tetrahedron* 2006, 62, 5686–5691; (d) Chen, Y.-P.; Wu, S.-L.; Su, J.-H.; Lin, M.-R.; Hu, W.-P.; Hwang, T.-L.; Sheu, J.-H.; Fan, T.-Y.; Fang, L.-S.; Sung, P.-J. *Bull. Chem. Soc. Jpn.* 2006, 79, 1900–1905.
- (a) Sung, P.-J.; Fan, T.-Y. *Heterocycles* 2003, 60, 1199–1202; (b) Sung, P.-J.; Fan, T.-Y.; Fang, L.-S.; Wu, S.-L.; Li, J.-J.; Chen, M.-C.; Cheng, Y.-M.; Wang, G.-H. *Chem. Pharm. Bull.* 2003, 51, 1429–1431; (c) Sung, P.-J.; Fan, T.-Y.; Chen, M.-C.; Fang, L.-S.; Lin, M.-R.; Chang, P.-C. *Biochem. Syst. Ecol.* 2004, 32, 111–113; (d) Sung, P.-J.; Lin, M.-R.; Fang, L.-S. *Chem. Pharm. Bull.* 2004, 52, 1504–1506; (e) Sung, P.-J.; Lin, M.-R.; Chen, W.-C.; Fang, L.-S.; Lu, C.-K.; Sheu, J.-H. *Bull. Chem. Soc. Jpn.* 2004, 77, 1229–1230; (f) Sheu, J.-H.; Chen, Y.-P.; Hwang, T.-L.; Chiang, M. Y.; Fang, L.-S.; Sung, P.-J. *J. Nat. Prod.* 2006, 69, 269–273; (g) Sung, P.-J.; Fang, L.-S.; Chen, Y.-P.; Chen, W.-C.; Hu, W.-P.; Ho, C.-L.; Yu, S.-C. *Biochem. Syst. Ecol.* 2006, 34, 64–70.
- Sung, P.-J.; Fan, T.-Y.; Fang, L.-S.; Sheu, J.-H.; Wu, S.-L.; Wang, G.-H.; Lin, M.-R. *Heterocycles* 2003, 61, 587–592.
- Chen, W.-C.; Sheu, J.-H.; Fang, L.-S.; Hu, W.-P.; Sung, P.-J. Nat. Prod. Res. 2006, 20, 748–753.
- 6. Fraga, B. M. Nat. Prod. Rep. 2006, 23, 943-972.
- (a) Kernan, M. R.; Cambie, R. C.; Bergquist, P. R. J. Nat. Prod. 1990, 53, 1353–1356; (b) Wang, G.-H.; Ahmed, A. F.; Sheu, J.-H.; Duh, C.-Y.; Shen, Y.-C.; Wang, L.-T. J. Nat. Prod. 2002, 65, 887–891; (c) Ahmed, A. F.; Su, J.-H.; Shiue, R.-T.; Pan, X.-J.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. J. Nat. Prod. 2004, 67, 592–597.
- Anjaneyulu, V.; Rao, K. N.; Kobayashi, M. Indian J. Chem. 1995, 34B, 78–80.
- Nourry, M.; Urvois, P.-A.; Tomasoni, C.; Biard, J. F.; Verbist, J. F.; Roussakis, C. Anticancer Res. 1990, 19, 1881–1886.
- Puglisi, M. P.; Paul, V. J.; Biggs, J.; Slattery, M. Mar. Ecol. Prog. Ser. 2002, 239, 105–114.
- 11. MSI INSIGH II/DISCOVER (version 95.0/2.97) is molecular modeling software package of MSI Technologies, Barnes Canyon Road, San Diego, CA, 92121, USA.
- Atta-ur-Rahman; Choudhary, M. I.; Thomsen, W. J. Bioassay Techniques for Drug Development; Harwood Academic: Amsterdam, Netherlands, 2001; pp 14–18.